51搜题 > “光学加工”标签

光纤端面处理、连接、耦合与焊接技术

 在光纤的安装中常常需要对其端面进行处理,在光纤连接时常要考虑最佳耦合,如光纤焊接等,这些工艺质量将直接关系到光纤传输的效率。因此,加强这些操作技能的训练,对用好光纤是大有帮助的。

 实验目的

 (1)掌握光纤头平整端面处理技术。

 (2)掌握光纤与光纤之间的耦合调试技术,体会光纤横向和纵向偏差对光纤耦合损耗的影响。

 (3)掌握光纤焊接的基本技术。

 实验内容

 (1)光纤端面处理。

 (2)光纤连接、耦合及调试。

 (3)光功率测试。

 (4)光纤焊接及接点损耗计算。

 实验仪器器材

 (1)光纤熔接机及电源。

 (2)尾纤输出半导体激光器(LD)及电源。

 (3)功率计。

 (4)显微镜。

 (5)刀片与金刚刀。

 (6)V形槽。

 (7)光纤调整架。

 (8)光电探测器件。

 (9)万用表。

 实验原理

 1.光纤的基本结构及类型

 光纤(Optic fiber),是光导纤维的简称,它能够将进入光纤一端的光线传送到光纤的另一端。光纤是一种多层介质结构的对称柱体光学纤维,它一般由纤芯、包层、涂覆层与护套层构成。

 纤芯与包层是光纤的主体,对光波的传播起着决定性作用。纤芯多为石英玻璃,直径一般为5~75μm,材料主体为二氧化硅,其中掺杂其他微量元素,以提高纤芯的折射率。包层直径很小,一般约为100~200μm,其材料主体也为二氧化硅,但折射率略低于纤芯。

 涂覆层的材料一般为硅酮或丙烯酸盐,主要用于隔离杂光。护套的材料一般为尼龙或其他有机材料,用于提高光纤的机械强度,保护光纤。一般,没有涂覆层和护套的光纤,则称为裸纤。

 光纤的种类很多,从不同的角度出发,有不同的分类。一般,有以下四种分类:

 ①按光纤材料可分七种:石英系光纤;多组分玻璃光纤;氟化物光纤;塑料光纤;液芯光纤;晶体光纤;红外材料光纤等。

 ②按传输模式多少可分二类:单模光纤与多模光纤。

 ③按光纤工作波长可分三种:0.8~0.9μm的短波长光纤;1~1.7μm的长波长光纤;2μm以上的超长波长光纤。

 ④按光纤横截面上折射率的分布可分二类:阶跃型(突变型)光纤;梯度型(自聚焦或渐变型)光纤。

 阶跃光纤及其纤芯折射率径向分布函数,在纤芯和包层两种介质内部,折射率均匀分布,即n1、n2均为常数,因此在纤芯与包层的分界处折射率产生阶跃变化。

 梯度光纤的纤芯折射率沿径向呈非线性规律递减,故亦称渐变折射率光纤。

 2.光纤端面处理技术

 在光纤的各种应用中,光纤端面处理是一种最基本的技术,光纤端面处理的形式可分为两种:平面光纤头与微透镜光纤头。前者多用于各种无源器件以及光纤的连接与接续;后者多用于光纤和各种光源探测器件之间的耦合。光纤端面处理的基本步骤是:

 (1)涂覆层剥除

 在制备光纤头之前,首先要剥除一段光纤的套塑层与预涂覆层(约20~30mm长),使光纤头与刀口之间成一小角度,用左手拇指将光纤头压到刀口上,右手拉动光纤即可剥除套塑层。另外一种方法是将光纤头在塑料溶剂中浸泡几分钟,然后用脱脂棉擦除套塑层。

 预涂覆层的剥除也可采用类似的方法进行。在剥除套塑层和预涂覆层之后,要用脱脂棉沾乙醇/乙醚混合液将光纤头清洗干净,才能进行下一步光纤头的处理。

 (2)光纤头制备

 1)平面光纤头的制备:

 对于平面光纤头的基本要求是,光纤端面是一个平整的镜面,且必须与光纤纤轴垂直。因此,将光纤简单地“一刀两断”是不行的,必须根据光纤的材料与品种选择合适的端面处理技术。对于石英光纤,制备平面光纤头的常用方法有:加热法、切割法和研磨法。

 加热法是一种最原始也是最简单的方法,同时在一般情形下也是行之有效的,且尤为适合于100μm以上直径的粗光纤。这种方法依据的原理是,光纤受局部加热产生的应力突变会使其沿直径方向解理,从而形成所需镜面。制作时,首先将已剥除套塑层和预涂覆层的裸光纤头在电弧(或其他热源如酒精灯)下均匀加热,然后迅速用镊子(或相当的工具)夹住光纤端部弯曲折断即可。利用此方法制备光纤头的成功率一般较低,需要有相当的经验才能获得满意的结果。

 切割法是利用钻石或金刚石特制的光纤切断刀,先在光纤侧表面垂直与纤轴轻轻刻一小口,然后施加弯曲应力拉动光纤使其折断。利用这种方法制备平面光纤头的成功率一般较高,稍加训练即可获得满意的效果。因此,已成为目前最常用的光纤头处理技术。而且技术人员已利用切割法的原理制成了“光纤切割钳”,集剥除与切割于一体,使用十分方便。

 研磨法是一种更为精密的光纤端面制备技术。它不仅可以使光纤端面更为接近于理想镜面,而且还可以克服“切割法”和“加热法”不易保证光纤端面与纤轴垂直的缺憾,使光纤端面倾斜角降至几十秒以下。研磨法涉及极为复杂的光学加工技术,其基本过程为:

 ①套管加固:将剥除了涂覆层的光纤套入保护套管之中制成光纤插针,以备光学加工。保护套管一般分为内套管、中间过渡套管与外套管三层。内套管采用精密拉制的玻璃毛细管,其内径与光纤包层直径相当,外径与过渡套管内径相当。过渡套管与外套管一般采用特制的不锈钢管,对其内外径几何尺寸与公差有较苛刻的要求。在每一层套管之间用环氧树脂胶加固,并需要精密调节对中,以保证光纤与各层套管同轴。但由于调节环节较多,光纤在套管中的角向偏移,仍不可避免。

 目前,人们已经采用了一种更为先进的“陶瓷套管”加固技术,利用特殊配方的陶瓷和精密模具成形技术,直接制成内径125μm,外径2.8mm的精密套管,消除了在套管中的角向偏移。以这种方法制备的光纤插针,已经问世并获应用。

 ②模具加工:已制成的光纤插针,要用合适的模具固定夹持,才能进行光学冷加工。模具的质量是影响光纤端面倾斜度的重要因素。模具材料的硬度,要与光纤材料相匹配。夹持机构,要保证插针与模具盘研磨面垂直,并便于安装和拆卸。

 ③研磨抛光:一般,可以采用常规的光学冷加工技术,对光纤端面进行研磨与抛光,使之成为完美的镜面。在加工过程中,要随时检测光纤端面的垂直度,以获得最小的端面倾斜角。

 2)微透镜光纤头的制备:

 所谓微透镜光纤头是指在光纤端部制作一微透镜,以提高光纤接收光源功率,或使光纤输出光功率更有效地会聚于光探器的光敏面上。微透镜制备方法可分为两种:烧球和点球。

 ①烧球是对已制备好的平整光纤面进行加热(用电弧放电或其他方法),使端部软化,并成为一个半球形微透镜。在加热过程中,往复移动加热源和改变加热温度,可以获得不同曲率半径的透镜。

 ②点球是将已制备好的平整光纤端面浸入熔融的石英玻璃或光学环氧树脂之中点蘸一微透镜。通过控制浸入深度与提升速度,可获得不同形状的微透镜。通过改变微透镜材料,还可获得不同的透镜折射率,以适应不同场合光纤耦合的需要。

 为了进一步提高光纤微透镜的耦合效率,还可将光纤头先拉制成锥形,然后再在锥端部制作微透镜。这样,可使得透镜的曲率半径大为减小,会聚能力大大提高。光纤拉锥的方法有三种:

 第一种是磨消法,采用特殊的加工工艺将光纤的包层磨削成椎体,使锥端直径等于或略大于纤芯直径。

 第二种是腐蚀法,将光纤头浸入氢氟酸(或其他酸性溶剂)之中,由于腐蚀作用会使光纤头成为尖锥形状,然后对锥端进行切割处理。

 第三种是加热拉锥法,利用电弧放电加热光纤,同时向两侧拉动光纤直至断开,即可形成锥形光纤头。后一种方法中,光纤的纤芯也会随包层一起变细成为椎体,从而使得在其中传播的光波场分布及传播特性发生改变。

 不同参数的光纤微透镜,其耦合效率有很大的差异。应精心设计光纤锥长和微透镜曲率半径,以提高耦合效率。此外,光纤微透镜的反馈作用对半导体激光器(LD)的不利影响也是一个应考虑的重要因素。往往耦合效率高的透镜,其光反馈也强,因此在两者之间要进行合理的选择。

 (3)光纤头质量的检验

 光纤微透镜质量的好坏可依据其与LD耦合时损耗的大小来判定。方法是:取一横模特性好的LD芯片作为光源,首先测试其输出光功率,记为P1;然后保持该功率恒定不变(通常应对LD施行温度与功率自动控制),用微调架调整光纤微透镜,使其与LD芯片对准,在光纤的输出端,进行扰模和滤模,以剔除包层模和高阶模功率,然后测试光纤输出光功率,并精心调节使其达到最大,记为P2,则光纤的耦合损耗α(单位为dB)为

 α=log(P2/P1)(26-1)

 由此可知,α越小,则光纤微透镜质量越好。检验平面光纤端面的最直观的方法,是向光纤中注入He-Ne激光,观察由光纤输出的光斑质量,即可判定光纤端面的质量。一个好的光纤端面,其输出光斑应是圆对称的,边缘清晰,且与光纤轴线方向垂直。如果端面质量不高,则输出光斑就会发生散射或倾斜。另一种更为精密的方法,是利用高倍率显微镜来进行检验。首先,正面观察光纤端面,其表面应均匀,无裂纹,圆周轮廓清晰;然后,侧面观察光纤并转动光纤,其端部边缘应整齐,无凹陷或尖劈,且边缘与纤轴垂直。

 3.光纤连接耦合技